LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds.

Photo from wikipedia

BACKGROUND Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society… Click to show full abstract

BACKGROUND Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society to seek alternative strategies, utilizing mostly the tissue engineering approaches. Unlike to perfusion decellularization of kidneys, we proposed alternative decellularization strategies to obtain acellular kidney scaffolds. The aim of this study was the evaluation of two different decellularization approaches for producing kidney bioscaffolds. METHODS Rat kidneys from Wistar rats, were submitted to decellularization, followed two different strategies. The decellularization solutions used in both approaches were the same and involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate and sodium dodecyl sulfate buffers for 12 h each, followed by incubation in a serum medium. Both approaches involved 3 decellularization cycles. Histological analysis, biochemical and DNA quantification were performed. Cytotoxicity assay and repopulation of acellular kidneys were also applied. RESULTS Histological, biochemical and DNA quantification confirmed that the 2nd approach had the best outcome regarding the kidney composition and cell elimination. Acellular kidneys from both approaches were successfully recellularized. CONCLUSION Based on the above data, the production of kidney scaffolds with the proposed cost- effective decellularization approaches, was efficient.

Keywords: production; decellularization strategies; kidney scaffolds; decellularization; optimizing decellularization; kidney

Journal Title: Tissue engineering and regenerative medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.