Buckling and free vibration characteristics of functionally graded porous metal ceramic beams subjected to mechanical and thermal loads are presented. Five-noded, beam element with ten degrees of freedom is used… Click to show full abstract
Buckling and free vibration characteristics of functionally graded porous metal ceramic beams subjected to mechanical and thermal loads are presented. Five-noded, beam element with ten degrees of freedom is used to analyse the buckling and vibration behaviour. The effects of porosity, porosity pattern, functional grading of material, elastic foundations, slenderness ratio and different boundary conditions are analysed for critical comparison of behaviour of the beam under thermal and mechanical load. Results revealed that buckling and dynamic behaviour of the beam under thermal load is significantly different compared to the mechanical load. It is also observed that nature of porosity distribution and its volume fraction also influences the buckling strength significantly. Beam with uniform porosity shows better thermal buckling strength likewise beam with graded porosity for mechanical buckling strength.
               
Click one of the above tabs to view related content.