LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study of Faraday-type nitrogen plasma magnetohydrodynamic generator

Photo from wikipedia

The variables of a magnetohydrodynamic (MHD) generator were analyzed for the application of a cogeneration system in a coal-fired power station. The MHD generator system is more efficient than other… Click to show full abstract

The variables of a magnetohydrodynamic (MHD) generator were analyzed for the application of a cogeneration system in a coal-fired power station. The MHD generator system is more efficient than other generation systems, owing to its high working temperature. The system is typically combined with a steam generator because high-temperature conditions result in significant residual heat. The magnetic and electric fields, which directly affect the electric output, should be analyzed under this condition. The electric field, velocity, and magnetic flux density of the MHD generator were analyzed, and nitrogen plasma in the temperature range of 3000 K was employed. The electric power was affected by velocity, magnetic flux density, and electric conductivity. The electric power was proportional to the square of the velocity and magnetic flux density and proportional to the electrical conductivity. A de Laval nozzle was adopted to increase the velocity. The electric power was optimized according to the angle of the de Laval nozzle. Power generation was derived through the geometrical size and magnetic flux density of the prototype Faraday-type nitrogen plasma MHD generator.

Keywords: mhd generator; magnetic flux; flux density; power; nitrogen plasma; generator

Journal Title: Journal of the Korean Physical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.