LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Naturally Occurring Dipeptides and Single-Stranded Oligonucleotide Act as Entry Inhibitors and Exhibit a Strong Synergistic Anti-HIV-1 Profile

Photo from wikipedia

The availability of new classes of antiretroviral drugs is critical for treatment-experienced patients due to drug resistance to and unwanted side effects from current drugs. Our aim was therefore to… Click to show full abstract

The availability of new classes of antiretroviral drugs is critical for treatment-experienced patients due to drug resistance to and unwanted side effects from current drugs. Our aim was therefore to evaluate the anti-HIV-1 activity of a new set of antivirals, dipeptides (WG-am or VQ-am) combined with a single-stranded oligonucleotide (ssON). The dipeptides were identified as naturally occurring and enriched in feces and systemic circulation in HIV-1-infected elite controllers and were proposed to act as entry inhibitors by binding to HIV-1 gp120. The ssON is DNA 35-mer, stabilized by phosphorothioate modifications, which acts on the endocytic step by binding to cell host receptors and inhibiting viruses through interference with binding to nucleolin. Chou–Talalay’s Combination Index method for quantifying synergism was used to evaluate the drug combinations. Patient-derived chimeric viruses encoding the gp120 (env region) were produced by transient transfection and used to evaluate the antiviral profile of the combinations by drug susceptibility assays. We found that the combination WG-am:ssON or VQ-am:ssON had low combination index values, suggesting strong antiviral synergism. Of the two combinations, WG-am:ssON (1 mM:1 μM) had high efficacy against all prototype or patient-derived HIV-1 isolates tested, independent of subtype including the HIV-1-A6 sub-subtype. In addition, the antiviral effect was independent of co-receptor usage in patient-derived strains. WG-am and ssON alone significantly inhibited HIV-1 replication regardless of viral subtype and co-receptor usage, and the combination WG-am:ssON (1 mM:1 μM) was even more effective due to synergism.

Keywords: single stranded; stranded oligonucleotide; anti hiv; hiv; naturally occurring; act entry

Journal Title: Infectious Diseases and Therapy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.