LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg–8Li–2Ca Alloy

Photo from wikipedia

Calcium phosphate (CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation (MAO) in an alkaline Na3PO4–Ca[C3H7O6P] base solution at the different applied voltages. Scanning electron microscope and X-ray… Click to show full abstract

Calcium phosphate (CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation (MAO) in an alkaline Na3PO4–Ca[C3H7O6P] base solution at the different applied voltages. Scanning electron microscope and X-ray diffraction were employed to characterize the microstructure and phase composition of the coatings, respectively. The corrosion resistance of the coatings was assessed by potential dynamic polarization curves, electrochemical impedance spectroscopy and hydrogen evolution experiment in simulated body fluids solution. The friction and wear properties were evaluated by friction and wear testing machine. The results demonstrate that the coating surface is porous and mainly composed of MgO, Ca5(PO4)3(OH) and CaH2P2O5. With the increase in voltage, the corrosion resistance and wear resistance of the MAO coating are both enhanced. The corrosion current density of the MAO coating decreases about two orders of the magnitude compared to the substrate. Additionally, wear and corrosion mechanisms are discussed.

Keywords: voltage corrosion; micro arc; corrosion; resistance; 8li 2ca; arc oxidation

Journal Title: Acta Metallurgica Sinica (English Letters)
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.