LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels

Photo from wikipedia

The segregation behavior of trace amount of phosphorus (P) and the mechanical properties of dual-phase (DP) steels have been systematically studied. The microstructure of DP steels is mainly composed of… Click to show full abstract

The segregation behavior of trace amount of phosphorus (P) and the mechanical properties of dual-phase (DP) steels have been systematically studied. The microstructure of DP steels is mainly composed of martensite, ferrite and nanoscale carbides. For the DP steels with different trace amounts of P (≤ 0.015 wt%), P has almost no effect on the mechanical properties. Atom probe technology (APT) analyses confirm that P segregation was only found at the precipitate/matrix interface. Moreover, the precipitates of (Ti, Mo) C are widely distributed in the ferrite, martensite and ferrite/martensite interface regions. The special segregation feature of P would not concentrate at specific regions such as ferrite/martensite interface and/or martensite lath interface, which reveals that trace amounts of P (≤ 0.015wt%) have almost no effect on the mechanical properties of DP steels. It is proved for the first time that the MC-type carbides of (Ti, Mo) C can reduce or eliminate the damage effect of P on the mechanical properties of steels, which provides a new way for the design of alloys to reduce P damage. This work will promote to increase the P content control standard in DP steels from 0.01 to 0.015 wt%, which will not change the mechanical properties, but greatly reduce the scrap rate and increase the energy efficiency of the manufacturing process.

Keywords: phase steels; trace; mechanical properties; segregation; properties dual; dual phase

Journal Title: Acta Metallurgica Sinica (English Letters)
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.