BackgroundThe aim of present work, was to synthesize the titanium nanoparticles (TNPs) and titanium nanotubes (TNTs) through the hydrothermal method with different precursors including the Titanium(IV) isopropoxide (TTIP) and Titanium(IV)… Click to show full abstract
BackgroundThe aim of present work, was to synthesize the titanium nanoparticles (TNPs) and titanium nanotubes (TNTs) through the hydrothermal method with different precursors including the Titanium(IV) isopropoxide (TTIP) and Titanium(IV) bis(ammonium lactato)dihydroxide (TALH).MethodsTiO2 nanostructures from different titania precursors as heterogeneous photocatalysis via hydrothermal method were synthesized. The as-prepared photocatalysts were characterized by X-ray diffraction, UV–Vis diffuse reflectance spectra, surface area measurements, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The TiO2 photocatalysts were tested on the degradation of 4-Chlorophenol (4-CP) aqueous solution under UVC irradiation in a fabricated photoreactor.ResultsThe effect of operating parameters including the; initial 4-CP concentration (50–150 mg/L), catalyst dosages (0–3 g/L) and solution pH (4–10) on the photocatalytic activity of the prepared catalysts were systematically investigated. The results show that amongst the TiO2 nanostructures under best conditions (initial 4-CP concentration of 50 mg/L, catalyst dosage of 2 g/L, pH of 4.0, Time of 180 min) TNT-P2 exhibited much higher photocatalytic degradation efficiency (82%) as compared with TNT-P1 (77%), TNP-P2 (51%), and TNP-P1 (48%). Moreover, the mechanism and tentative pathways of 4-CP degradation were explored. Finally, the kinetic study was performed and the Langmuir-Hinshelwood kinetic model was aptly fitted with the experimental data.ConclusionThe results of the photocatalytic activity measurement demonstrated that one-dimensional TNTs shows enhanced photocatalytic performance as compared to the TNPs, therefore, indicating the beneficial feature of TNTs as a photocatalyst for the degradation of pollutants. Besides, TiO2 nanostructures prepared from TALH precursor (TNT-P2 82%, TNP-P2 51%) has higher photocatalytic degradation efficiency as compared with TTIP precursors (TNT-P1 77%, TNP-P1 48%).
               
Click one of the above tabs to view related content.