Hydrothermal carbon(HC) was prepared from walnut shells, which are abundant in Northeastern China. The prepared HC was used as a precursor to produce nitric acid modified carbon(MC). The hydrothermal carbonization… Click to show full abstract
Hydrothermal carbon(HC) was prepared from walnut shells, which are abundant in Northeastern China. The prepared HC was used as a precursor to produce nitric acid modified carbon(MC). The hydrothermal carbonization included dehydration and decarboxylation processes wherein the hemicellulose was completely decomposed and the cellulose was partly decomposed, with some oxygen-containing functional groups being produced. The aromaticity, specific surface area and pore content of the HC increased, but its polarity decreased. With 6 mol/L nitric acid and a modification time of 15 min, the specific surface area and pore content decreased, but the proportion of oxygen-containing functional groups on the surface increased significantly, thereby improving the dye adsorption performance. The adsorption of methylene blue and malachite green was best described by the pseudo-second-order kinetic and Langmuir isotherm models. The adsorption capacity of MC was determined to be much larger than that of HC.
               
Click one of the above tabs to view related content.