LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NARX Model Identification Using Correntropy Criterion in the Presence of Non-Gaussian Noise

Photo by elyaspasban from unsplash

In past years, the system identification area has emphasized the identification of nonlinear dynamic systems. In this field, polynomial nonlinear autoregressive with exogenous (NARX) models are widely used due to… Click to show full abstract

In past years, the system identification area has emphasized the identification of nonlinear dynamic systems. In this field, polynomial nonlinear autoregressive with exogenous (NARX) models are widely used due to flexibility and prominent representation capabilities. However, the traditional identification algorithms used for model selection and parameter estimation with NARX models have some limitation in the presence of non-Gaussian noise, since they are based on second-order statistics that tightly depend on the assumption of Gaussianity. In order to solve this dependence, a novel identification method called simulation correntropy maximization with pruning (SCMP) based on information theoretic learning is introduced by this paper. Results obtained in non-Gaussian noise environment in three experiments (numerical, benchmark data set and measured data from a real plant) are presented to validate the performance of the proposed approach when compared to other similar algorithms previously reported in the literature, e.g., forward regression with orthogonal least squares and simulation error minimization with pruning. The proposed SCMP method has shown increased accuracy and robustness for three different experiments.

Keywords: narx; presence non; gaussian noise; identification; non gaussian

Journal Title: Journal of Control, Automation and Electrical Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.