LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Speed Control of a Separately Excited DC Motor Using New Proposed Fuzzy Neural Algorithm Based on FOPID Controller

The main goal of this paper is to control the speed of a separately excited DC motor (SEDM) with a new proposed fuzzy neural (FN) controller. This proposed method is… Click to show full abstract

The main goal of this paper is to control the speed of a separately excited DC motor (SEDM) with a new proposed fuzzy neural (FN) controller. This proposed method is used to adjust the fractional order proportional integral derivative (FOPID) parameters of the controller. Also the proposed control diagram solves the problem of parameter setting of the FN controller more effectively with use of particle swarm optimization (PSO) algorithm. In simulation with MATLAB 2017b, 250 series of data were used: 175 series of data, equivalent to 70% for training the designed neural network, and about 75 series, equivalent to 30% used to test and validate the neural network. The results show that the proposed method has a lower rise time and settling time for controlling the speed of SEDM in comparison with other methods such as Ziegler–Nichols, Cohen–Coon, PSO, genetic algorithm, artificial bee colony, artificial neural network, fuzzy logic controller and adaptive neuro-fuzzy interference system for PID and FOPID controllers.

Keywords: new proposed; excited motor; control; controller; proposed fuzzy; separately excited

Journal Title: Journal of Control, Automation and Electrical Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.