LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stability and bifurcation analysis of Japanese encephalitis model with/without effects of some control parameters

Photo from wikipedia

In this paper, a mathematical model on transmission of Japanese Encephalitis disease has been developed considering some control parameters and time-dependent environmental-carrying capacity. Here, the total vector population is divided… Click to show full abstract

In this paper, a mathematical model on transmission of Japanese Encephalitis disease has been developed considering some control parameters and time-dependent environmental-carrying capacity. Here, the total vector population is divided into two subpopulations such as susceptible mosquito and infected mosquito. Here also, total reservoir population (i.e., the population in which the encephalitis virus grows) such as pig, horse, etc., has been considered which is divided into three subpopulations such as susceptible reservoir, infected reservoir and recovered reservoir. Total human population is also divided into three subpopulations such as susceptible human, infected human and recovered human. The dynamical behaviors of the system have been investigated. Here, the basic reproduction number associated with the system has been analyzed with respect to control parameters both theoretically and numerically. The biological feasible equilibria and their stability properties have been discussed and the existence condition of the disease has been illustrated numerically. For a certain set of parametric values, effectiveness of control parameters of our proposed model has been checked numerically. At last, Hopf bifurcations have been made numerically without considering control parameters for the case of constant environmental-carrying capacity of mosquito.

Keywords: control; japanese encephalitis; model; control parameters; population

Journal Title: Computational and Applied Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.