We propose three new preconditioners: diagonal and optimal-circulant splitting preconditioner, diagonal and skew-circulant splitting preconditioner, and diagonal and optimal-skew-circulant splitting preconditioner for solving the diagonal-plus-Toeplitz linear system discretized from the… Click to show full abstract
We propose three new preconditioners: diagonal and optimal-circulant splitting preconditioner, diagonal and skew-circulant splitting preconditioner, and diagonal and optimal-skew-circulant splitting preconditioner for solving the diagonal-plus-Toeplitz linear system discretized from the spatial fractional diffusion equations. Theoretical analysis shows that these three preconditioners can make the eigenvalues of the preconditioned matrices be clustered around 1, especially when the grids of the discretizations are refined. These results coincide with the one about the diagonal and circulant splitting preconditioner constructed recently by Bai et al. (Numer Linear Algebra Appl 24:e2093, 2017). Numerical experiments exhibit that the proposed preconditioners can significantly improve the convergence of the Krylov subspace iteration methods like GMRES and BiCGSTAB, and they outperform the diagonal and circulant splitting preconditioner as well.
               
Click one of the above tabs to view related content.