LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite-time dissipative control of uncertain singular T–S fuzzy time-varying delay systems subject to actuator saturation

Photo by jontyson from unsplash

This paper investigates the dissipative-based finite-time control for uncertain singular T–S fuzzy time-varying delay system affected by actuator saturation. First, the concept of dissipative stability and finite-time bound is presented.… Click to show full abstract

This paper investigates the dissipative-based finite-time control for uncertain singular T–S fuzzy time-varying delay system affected by actuator saturation. First, the concept of dissipative stability and finite-time bound is presented. Then an appropriate Lyapunov–Krasovskii functional (LKF) is established and for the sake of reducing the conservatism of the results, some free matrices are introduced. Using the convexity property of the matrix inequality, some conditions are given to ensure the fuzzy system is finite-time bounded and dissipative. Moreover, by solving a series of linear matrix inequalities (LMIs), the controllers with the dissipative disturbance weakened level are derived. Finally, simulation examples are presented to show the feasibility and superiority of this method.

Keywords: finite time; uncertain singular; singular fuzzy; control uncertain; time; fuzzy time

Journal Title: Computational and Applied Mathematics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.