LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Lower Bound for the Maximal Valence of Harmonic Polynomials

Photo from archive.org

We find a new lower bound for the maximal number of zeros of harmonic polynomials, $$p(z)+\overline{q(z)}$$p(z)+q(z)¯, when $$\deg p = n$$degp=n and $$\deg q = n-2$$degq=n-2. Click to show full abstract

We find a new lower bound for the maximal number of zeros of harmonic polynomials, $$p(z)+\overline{q(z)}$$p(z)+q(z)¯, when $$\deg p = n$$degp=n and $$\deg q = n-2$$degq=n-2.

Keywords: harmonic polynomials; bound maximal; new lower; lower bound; maximal valence

Journal Title: Computational Methods and Function Theory
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.