We find a new lower bound for the maximal number of zeros of harmonic polynomials, $$p(z)+\overline{q(z)}$$p(z)+q(z)¯, when $$\deg p = n$$degp=n and $$\deg q = n-2$$degq=n-2. Click to show full abstract
We find a new lower bound for the maximal number of zeros of harmonic polynomials, $$p(z)+\overline{q(z)}$$p(z)+q(z)¯, when $$\deg p = n$$degp=n and $$\deg q = n-2$$degq=n-2.
               
Click one of the above tabs to view related content.