LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-dimensional rate-independent plasticity using the element-based finite volume method

Photo from wikipedia

The element-based finite volume method (EbFVM) is well established in computational fluid dynamics; in the last decade, it has been extended to several areas of engineering and physics interest, such… Click to show full abstract

The element-based finite volume method (EbFVM) is well established in computational fluid dynamics; in the last decade, it has been extended to several areas of engineering and physics interest, such as electromagnetism, acoustics, and structural mechanics analysis with complex geometrical shapes. This paper describes the treatment of the conservative EbFVM approach for two-dimensional isotropic elastic–plastic rate-independent problems. In particular, we use plane strain and plane stress approaches upon incremental thermal and mechanical loads. In order to verify the performance of the EbFVM, numerical results are compared with a commercial simulator. Finally, from the present implementation and the comparisons performed, we can ensure that EbFVM makes accurate prediction as the traditional numerical approach commonly employed for the solution of mechanics problems.

Keywords: volume method; element based; finite volume; based finite; rate independent; two dimensional

Journal Title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.