LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law

Photo from wikipedia

The present communication addresses the magnetoperistalsis of Jeffrey nanomaterial in a vertical asymmetric compliant channel walls. Flow modeling is based upon mixed convection, non-Darcy’s resistance, thermal radiation, Brownian motion and… Click to show full abstract

The present communication addresses the magnetoperistalsis of Jeffrey nanomaterial in a vertical asymmetric compliant channel walls. Flow modeling is based upon mixed convection, non-Darcy’s resistance, thermal radiation, Brownian motion and thermophoresis, chemical reaction and activation energy. Nonlinear thermal radiation is taken instead of classical linear radiation consideration. Buongiorno model is used for nanofluid analysis. Channel boundaries are associated with no-slip, compliant characteristics and convective heat and mass transfer effects. Lubrication approach is followed and problems are numerically solved. Quantities of interest are analyzed physically. It is observed that velocity enhances for Hall and Darcy parameters. Temperature decreases with radiation parameter. It is found that concentration increases by increasing activation energy parameter.

Keywords: activation energy; nonlinear radiative; radiative peristaltic; activation; radiation

Journal Title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.