LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of hybrid textured tool performance under minimum quantity lubrication while turning of AISI 304 steel

Photo by judowoodo_ from unsplash

Nowadays, the surface texture of tool is an attractive machining technique due to the benefits in any chip removal machining process performance. However, surface texture design on texture tool plays… Click to show full abstract

Nowadays, the surface texture of tool is an attractive machining technique due to the benefits in any chip removal machining process performance. However, surface texture design on texture tool plays a significant role in improving the turning process performance, in this context, a novel hybrid surface texture design has been proposed in the current work. The present work focused on the machinability improvement of AISI 304 material by employing the surface texture tool under minimum quantity lubrication (MQL) condition. In this work, comparative evaluation of turning performance has been carried out with a fabricated single texture tool which consists of circular pit holes pattern (T-1) and a fabricated novel hybrid texture tool combination of linear grooves and circular dimples (T-2), respectively, during machining of AISI 304 material at increasing cutting velocity condition. From the result, it was observed that the proposed hybrid texture tool (T-2) significantly reduced the cutting temperature (Tm), tool flank wear (Vb) and surface roughness (Ra) to a maximum of 26%, 31% and 34%, respectively, when compared to T-1. Further, low built-up edge (BUE) was found in T-2 tool over T-1, respectively.

Keywords: aisi 304; surface texture; tool; texture tool; performance; texture

Journal Title: Journal of The Brazilian Society of Mechanical Sciences and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.