LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of vortex core generation in pipe flows under different Reynolds number conditions

Photo from wikipedia

Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution… Click to show full abstract

Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution using Large Eddy Simulations (LES). Features such as the mean velocity profiles and root mean squared velocity are first numerically investigated for different fluid properties involving Reynolds numbers ranging from 5,925 to 15,190 in order to verify the law-of-the-wall and turbulence statistics with experimental and DNS data. Once the simulations are validated, the vortex core generation within the flow is studied through a detection algorithm based on the $${\lambda }_{2}$$ criterion with two different approaches, first using an absolute threshold value and then using a relative threshold value depending on the turbulent intensity. Results are compared in terms of number of structures and Probability Density Functions for both the size and the radial distributions. Finally, results are compared for one condition with the Q-criterion to assess the results obtained resulting in practically identical volume and radial distributions. These results are deemed to shed light on the vortex formation and location to generate proper inflow boundary conditions to highly resolved simulations in varied engineering applications.

Keywords: number; vortex core; reynolds number; pipe; core generation; vortex

Journal Title: Journal of The Brazilian Society of Mechanical Sciences and Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.