LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An emergency braking controller based on extremum seeking with experimental implementation

Photo from wikipedia

An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking… Click to show full abstract

An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking controller could generate required braking moment to track the slip set point which belongs to that road condition. However, estimating the road condition is not an easy task and it brings additional computation effort. Rather than that, a self optimization algorithm is presented in this paper without relying on road condition estimation. The developed controller searches optimum operation point for getting maximum friction force. Computer simulations show the effectiveness of the self optimization routine. To validate the real time applicability of the algorithm, an electromechanical braking test system is used for the experiments. Due to the limited measurements from the experimental system, force and moment observers are designed to calculate necessary control inputs for maximizing the friction potential, i.e. the braking force. Via the experimental study, it has been shown that the developed self optimizing controller is fast, accurate, and operable on a real braking system.

Keywords: road condition; road; emergency braking; braking controller; controller; extremum seeking

Journal Title: International Journal of Dynamics and Control
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.