In this paper, we restrict our attention to sidewinding locomotion and present detailed kinematics and dynamics of a 3-D multi-link snake robot. To obtain kinematics of three-dimensional snake-like robot modeling,… Click to show full abstract
In this paper, we restrict our attention to sidewinding locomotion and present detailed kinematics and dynamics of a 3-D multi-link snake robot. To obtain kinematics of three-dimensional snake-like robot modeling, first, a virtual structure with an additional six degrees of freedom is attached to the tail of the robot. Denavit–Hartenberg method is next employed to derive the kinematics relationships. A spring and damper model is used to realistically model contacts between ground and the robot. Gibbs–Appell’s method is next utilized to obtain the 3-D robot dynamics. To validate the dynamics equations, SimMechanic software is used. Finally, a 3-D snake robot, referred to as FUM-Snake 5, is constructed and utilized to experimentally show the sidewinding locomotion. The theoretical derived equation in this study can also be used to generate both other 2-D and 3-D snake robot locomotions.
               
Click one of the above tabs to view related content.