In this work, a novel class of bilateral vibro-impact model is proposed. Unlike the traditional impact model, the energy dissipation of the novel bilateral system is measured by the model… Click to show full abstract
In this work, a novel class of bilateral vibro-impact model is proposed. Unlike the traditional impact model, the energy dissipation of the novel bilateral system is measured by the model of the restitution coefficient dependent with velocity. Then the random vibration of the system is investigated in the presence of Gaussian white noise excitations. The motions of the unperturbed impact system are firstly considered and grouped into two categories. Then, the mean drift and diffusion coefficients of the two kinds of motion are calculated with the stochastic averaging methodology for energy envelope under the assumed condition that the impact vibration system is quasi-conservative. Subsequently, the probability density functions of stationary responses are computed with solving the averaged Fokker-Plank-Kolmogorov equation. Finally, two illustrations are chosen to demonstrate the reliability of the presented technique. And, the validation of analytical results is verified by the simulation data generated by Monte Carlo.
               
Click one of the above tabs to view related content.