Aging is associated with an unavoidable decline in muscle mass, known as sarcopenia, leading to neuromuscular declines, muscle weakness, and subsequent disability. One particular measure utilized by rehabilitative professionals in… Click to show full abstract
Aging is associated with an unavoidable decline in muscle mass, known as sarcopenia, leading to neuromuscular declines, muscle weakness, and subsequent disability. One particular measure utilized by rehabilitative professionals in evaluating functional declines in older persons is sit-to-stand (STS) capacity. The purpose of this investigation was to determine the role of activation intensity requirements of the thigh musculature in limiting a multi-joint STS endurance task. To do so, surface EMG signals of the quadriceps femoris (QF) and hamstrings (biceps femoris; BF) and their co-activation ratios (H:Q) were collected in young (18–35 years; n = 12) and older (60–75 years; n = 12) adult participants who repeatedly stood from a seated position until exhaustion. QF %MVIC was the sole predictor of total STS task times, as those who required the highest quadriceps efforts had the shortest task times. Moreover, older adult participants had significantly higher starting QF %MVIC as well as shorter task times. Interestingly, the H:Q ratio was not a significant predictor of STS capacities, nor did it differ between age groups or with fatigue. Results indicate that strengthening of the quadriceps to elevate or maintain strength reserves may improve an older adult’s ability to perform multi-joint tasks repetitively throughout the day.
               
Click one of the above tabs to view related content.