LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Movement pattern of an ellipsoidal nanoparticle confined between solid surfaces: Theoretical model and molecular dynamics simulation

Photo by bady from unsplash

The movement pattern of ellipsoidal nanoparticles confined between copper surfaces was examined using a theoretical model and molecular dynamics simulation. Initially, we developed a theoretical model of movement patterns for… Click to show full abstract

The movement pattern of ellipsoidal nanoparticles confined between copper surfaces was examined using a theoretical model and molecular dynamics simulation. Initially, we developed a theoretical model of movement patterns for hard ellipsoidal nanoparticles. Subsequently, the simulation indicated that there are critical values for increasing the axial ratio, driving velocity of the contact surface, and lowering normal loads (i.e., 0.83, 15 m/s, and 100 nN under the respective conditions), which in turn change the movement pattern of nanoparticles from sliding to rolling. Based on the comparison between the ratio of arm of force ( e / h ) and coefficient of friction ( μ ) the theoretical model was in good agreement with the simulations and accurately predicted the movement pattern of ellipsoidal nanoparticles. The sliding of the ellipsoidal nanoparticles led to severe surface damage. However, rolling separated the contact surfaces and thereby reduced friction and wear.

Keywords: theoretical model; movement pattern; movement; pattern ellipsoidal

Journal Title: Friction
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.