LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface modification of YS-20 with polydopamine for improving the tribological properties of polyimide composites

Photo by shapelined from unsplash

Recently, great effort has been devoted to prepare various reinforce fillers to improve polymer performances, but ignoring the importance of raw polymer powders which are indispensable parts of hot-pressed polymer… Click to show full abstract

Recently, great effort has been devoted to prepare various reinforce fillers to improve polymer performances, but ignoring the importance of raw polymer powders which are indispensable parts of hot-pressed polymer composites. Herein, we engineer raw polyimide (PI) powders with the assistance of polydopamine (PDA) in aqueous solutions. After the modification, polymer powders change from hydrophobic to hydrophilic, which makes it is possible to further modification of polymer powders in liquid phase. During the curing process of modified polymer powders, the partial dehydration of the catechol groups and crosslinking of PDA via C-O-C bonds are confirmed. Based on the features of PDA, a non-destructive mixing method is utilized to realize homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in polymer matrix. In comparison with ball milling method, this way can preserve the integrated innate structure of MWCNTs effectively. Besides, by taking full advantage of the reducing and metal-coordination capability of PDA, Cu2+ is successfully loaded onto the surfaces of polymer powders. The related characterizations demonstrate that Cu2+ in situ converts to metallic copper rather than copper oxide during the hot pressing process. The tribological properties of corresponding polymer composites are also studied. These results indicate that modifying polymer powders with PDA is multi-profit and presents practical application prospect.

Keywords: modification polydopamine; surface modification; tribological properties; polymer powders; polymer

Journal Title: Friction
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.