LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-implicit operator splitting for the simulation of Herschel–Bulkley flows with smoothed particle hydrodynamics

Photo from archive.org

Smoothed particle hydrodynamics (SPH) has become a popular numerical framework of choice for simulating free-surface flows, mainly for Newtonian fluids. The topic regarding the simulation of non-Newtonian free-surface flows, however,… Click to show full abstract

Smoothed particle hydrodynamics (SPH) has become a popular numerical framework of choice for simulating free-surface flows, mainly for Newtonian fluids. The topic regarding the simulation of non-Newtonian free-surface flows, however, remains relatively untouched due to difficulties regarding the computation of viscous forces. In previous approaches, the viscous forces acting on each SPH particle were computed explicitly. Non-Newtonian fluids such as Herschel–Bulkley fluids, the effective viscosity between yielded and unyielded regions can differ by several orders of magnitudes; imposing severe time step restrictions for the simulation for explicit methods. Numerically, this can be seen as a stiff problem. We propose a semi-implicit time-stepping approach where the viscous forces are computed implicitly, within the context of SPH. We demonstrate the convergence of the method via a simple 2D test case.

Keywords: hydrodynamics; herschel bulkley; smoothed particle; particle; particle hydrodynamics; simulation

Journal Title: Computational Particle Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.