LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials

Photo by thomaschan523 from unsplash

The class $${\mathcal {B}}$$B of lacunary polynomials $$f\,(x)\ :=\ -1\ +\ x\ +\ x^{n}\ +\ x^{m_{1}}\ +\ x^{m_{2}}\ +\ \cdots \ +\ x^{m_{s}}$$f(x):=-1+x+xn+xm1+xm2+⋯+xms, where $$s\ \geqslant \ 0$$s⩾0, $$m_{1}\ -\… Click to show full abstract

The class $${\mathcal {B}}$$B of lacunary polynomials $$f\,(x)\ :=\ -1\ +\ x\ +\ x^{n}\ +\ x^{m_{1}}\ +\ x^{m_{2}}\ +\ \cdots \ +\ x^{m_{s}}$$f(x):=-1+x+xn+xm1+xm2+⋯+xms, where $$s\ \geqslant \ 0$$s⩾0, $$m_{1}\ -\ n\ \geqslant \ n\ -\ 1$$m1-n⩾n-1, $$m_{q+1}\ -\ m_{q}\ \geqslant \ n\ -\ 1$$mq+1-mq⩾n-1 for $$1\ \leqslant \ q\ <\ s$$1⩽q

Keywords: reducibility; almost newman; lacunary polynomials; class mathcal; geqslant

Journal Title: Arnold Mathematical Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.