LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite Element Analysis of Eyring–Powell Nano Fluid Over an Exponential Stretching Sheet

Photo by dawson2406 from unsplash

An analysis is made to study the two-dimensional boundary layer flow of Eyring–Powell nanofluid over an exponentially stretching sheet. The nanofluid model considered in the paper incorporates the effect of… Click to show full abstract

An analysis is made to study the two-dimensional boundary layer flow of Eyring–Powell nanofluid over an exponentially stretching sheet. The nanofluid model considered in the paper incorporates the effect of Brownian motion and thermophoresis. The condition for zero normal flux of nanoparticles at the stretching sheet is defined to impulse the particles away from surface. The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations with appropriate similarity transformations. The transformed boundary layer equations are solved numerically, using variational finite element method. The flow features and the heat transfer characteristics and nanoparticle volume fraction are analyzed and discussed in detail for several sets of values of the governing flow parameters. Also the effects of the various flow parameters on the skin friction and the rate of heat transfer are obtained and illustrated graphically. A comparison of the present results with the existing published results shows excellent agreement, which confirms the validity of the present methodology.

Keywords: finite element; stretching sheet; analysis; eyring powell; sheet

Journal Title: International Journal of Applied and Computational Mathematics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.