Small size V 2 SnC MAX phase was prepared by the molten salt method. V 2 SnC MAX phase electrode is able to deliver high gravimetric capacity up to 490… Click to show full abstract
Small size V 2 SnC MAX phase was prepared by the molten salt method. V 2 SnC MAX phase electrode is able to deliver high gravimetric capacity up to 490 mAh g −1 and volumetric capacity of 570 mAh cm −3 A charge storage mechanism with V 2 C-Li redox and Sn–Li alloying dual reactions was proposed MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V 2 SnC MAX phase by the molten salt method. V 2 SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g −1 and volumetric capacity of 570 mAh cm −3 as well as superior rate performance of 95 mAh g −1 (110 mAh cm −3 ) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn–Li (de)alloying reaction that occurs at the edge sites of V 2 SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V 2 C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
               
Click one of the above tabs to view related content.