The effect of time and temperature on the microwave sintering of 51(at.%)Ni–Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties… Click to show full abstract
The effect of time and temperature on the microwave sintering of 51(at.%)Ni–Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni–Ti samples exhibited a multi-step phase transformation B19′–R–B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni–Ti SMAs. This research aims to select the optimum parameters to produce Ni–Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.
               
Click one of the above tabs to view related content.