LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting

Photo by eriic from unsplash

The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of… Click to show full abstract

The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of Prussian blue analogs (PBA) as a precursor. The scanning electron microscopy and transmission electron microscopy results show that the P-Co0.9Ni0.9Fe1.2 NCs maintain a cubic structure with a rough surface, implying the rich surface defects as exposed active sites. The thermal phosphorization of the ternary PBA precursor not only provids carbon doping but also leads to the in situ construction of surface defects on the NCs. The carbon doping from the PBA precursor lowers the charge transfer resistance and optimizes the electronic transformation. The synergistic effect among the ternary metal ions and rich defects contributes to the enhanced electrocatalytic performance. The P-Co0.9Ni0.9Fe1.2 NCs achieve low overpotentials of −200.7 and 273.1 mV at a current density of 10 mA cm−2 for the hydrogen evolution reaction and the oxygen evolution reaction, respectively. The potential of overall water splitting reaches 1.52 V at a current density of 10 mA cm−2. The long-term stability of the electrocatalysts was also evaluated. This work provides a facile method to design efficient transition-metal-based bifunctional electrocatalysts for overall water splitting.摘要本文以三元金属钴-镍-铁普鲁士蓝结构纳米立方体(Co0.9-Ni0.9Fe1.2 NCs) 为前驱体, 通过简单气相磷化处理, 得到优化比例的 P-Co0.9Ni0.9Fe1.2 纳米立方体磷化物, 其具有高本征活性、导电性和高缺陷密度的特点. SEM和TEM结果表明, 碳掺杂型 P-Co0.9Ni0.9-Fe1.2 保持了纳米立方体的结构, 其粗糙的表面结构意味着丰富的缺陷位, 暴露更多真实活性位. 三元金属普鲁士蓝前驱体的磷化处理不仅提供了碳掺杂, 而且原位构筑了立方体表面缺陷位. 碳掺杂降低了电荷传输的阻抗, 优化了电子传输速率. 三元金属离子之间的协同作用以及丰富的缺陷活性位有效提高了电催化的性能. P-Co0.9Ni0.9Fe1.2 拥有极其高的HER和OER催化活性, 仅需要 −200.7 mV (HER) 和 273.1 mV (OER) 过电位就可以达到 10 mA cm−2 的电流密度. 其全水分解仅需 1.52 V 就可以达到 10 mA cm−2 的电流密度. 此外, 本文还对催化剂的稳定性进行了测试. 本工作为设计高效过渡金属基双功能电解水催化剂提供了一种简便方法.

Keywords: nickel iron; co0 9ni0; surface; 9ni0 9fe1; ternary cobalt; cobalt nickel

Journal Title: Science China Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.