Factors such as not only costs, production time, reproducibility, but also the quality of the components are decisive factors in assessing the economic efficiency of a manufacturing process. With additive… Click to show full abstract
Factors such as not only costs, production time, reproducibility, but also the quality of the components are decisive factors in assessing the economic efficiency of a manufacturing process. With additive manufacturing processes, component production is made possible directly from a 3D CAD model. This means that small series and prototypes can already be produced economically today. In this area, the laser-sintering process, in particular, offers great potential for series production due to its high strength values and ductility. With laser-sintering systems that allow an optical widening of the laser focus, a faster exposure of the component and thus a shortening of the building time is possible. We developed a laser-sintering system whose laser focus diameter is adjustable in its cross-sectional area from 0.47 to 2 mm. The goal for the future is to produce large-area components significantly faster by widening the focus diameter, thus making laser-sintering more productive. In this paper, the focus-dependent melt pool formation is examined in correlation to different hatch distances during the laser-sintering of polyamide 12. For this purpose, a test specimen was developed which can display single tracks as well as a multitude of different track widths for all feasible focus level variations. This knowledge is required to determine and investigate the track width-dependent melt pool formation as a function of the focal diameter of the component cross sections.
               
Click one of the above tabs to view related content.