LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data-driven visualization of multichannel EEG coherence networks based on community structure analysis

Photo by dawson2406 from unsplash

An electroencephalography (EEG) coherence network is a representation of functional brain connectivity, and is constructed by calculating the coherence between pairs of electrode signals as a function of frequency. Typical… Click to show full abstract

An electroencephalography (EEG) coherence network is a representation of functional brain connectivity, and is constructed by calculating the coherence between pairs of electrode signals as a function of frequency. Typical visualizations of coherence networks use a matrix representation with rows and columns representing electrodes and cells representing coherences between electrode signals, or a 2D node-link diagram with vertices representing electrodes and edges representing coherences. However, such representations do not allow an easy embedding of spatial information or they suffer from visual clutter, especially for multichannel EEG coherence networks. In this paper, a new method for data-driven visualization of multichannel EEG coherence networks is proposed to avoid the drawbacks of conventional methods. This method partitions electrodes into dense groups of spatially connected regions. It not only preserves spatial relationships between regions, but also allows an analysis of the functional connectivity within and between brain regions, which could be used to explore the relationship between functional connectivity and underlying brain structures. As an example application, the method is applied to the analysis of multichannel EEG coherence networks obtained from older and younger adults who perform a cognitive task. The proposed method can serve as a preprocessing step before a more detailed analysis of EEG coherence networks.

Keywords: coherence; analysis; coherence networks; multichannel eeg; eeg coherence

Journal Title: Applied Network Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.