Differential thermal analysis experiments have been performed on samples machined from Y2-blocks cast with different high-silicon spheroidal graphite irons. Depending on magnesium, silicon, cerium and antimony content, the as-cast microstructure… Click to show full abstract
Differential thermal analysis experiments have been performed on samples machined from Y2-blocks cast with different high-silicon spheroidal graphite irons. Depending on magnesium, silicon, cerium and antimony content, the as-cast microstructure showed various levels of chunky graphite in the central part of the blocks. In contrast, the microstructure of the materials after remelting and resolidification during differential thermal analysis consisted of lamellar or compacted graphite. The formation of chunky graphite in the as-cast microstructure is rationalized using an index or silicon equivalent that has been recently suggested. The differences in the microstructures after differential thermal analysis are discussed in terms of available free magnesium. Emphasis is finally put on the striking differences in characteristic size of the microstructures made of compacted graphite as compared to lamellar graphite and chunky graphite. This leads to tentative conclusions about growth of compacted and chunky graphite which would be worthy of further experimental investigations.
               
Click one of the above tabs to view related content.