LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A multiple autonomous underwater vehicles hazard decision method based on information fusion

Photo from wikipedia

Autonomous underwater vehicle (AUV) plays an important role in ocean research. Compared with single AUV system, multi-AUV system has higher stability, robustness and high efficiency. Multiple AUVs give greater credibility… Click to show full abstract

Autonomous underwater vehicle (AUV) plays an important role in ocean research. Compared with single AUV system, multi-AUV system has higher stability, robustness and high efficiency. Multiple AUVs give greater credibility than a single AUV in decision making. In this paper, the problem of multiple AUV making dangerous decisions in dangerous environments is studied. Single AUV can not make an accurate decision when facing some complex situations. We propose to fuse multiple AUV data to obtain more accurate dangerous decisions. The multi-AUV system adopts a distributed multi-robot structure, each AUV is an individual. A transferable information model and Dempster-Shafer evidence theory are used. A new multi-AUV hazard discrimination model is proposed for the final hazard decisionmaking. Verification by calculation, new decision-making method can effectively improve the discriminant ability of multi-AUV system when facing danger. This new hazard decision method improves the survivability of multiple AUVs in actual ocean exploration.

Keywords: decision; multi auv; method; autonomous underwater; auv system; auv

Journal Title: International Journal of Intelligent Robotics and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.