LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear Generalized Lie n-Derivations on von Neumann Algebras

Photo from archive.org

Let $${\mathcal {M}}$$M be a von Neumann algebra without central summands of type $$I_1$$I1. Assume that $$G:{{\mathcal {M}}}\rightarrow {{\mathcal {M}}}$$G:M→M is a nonlinear map. It is shown that G is… Click to show full abstract

Let $${\mathcal {M}}$$M be a von Neumann algebra without central summands of type $$I_1$$I1. Assume that $$G:{{\mathcal {M}}}\rightarrow {{\mathcal {M}}}$$G:M→M is a nonlinear map. It is shown that G is a generalized Lie n-derivation ($$n\ge 2$$n≥2) if and only if $$G(A)=\varphi (A)+\tau (A)$$G(A)=φ(A)+τ(A) holds for all $$A\in {{\mathcal {M}}}$$A∈M, where $$\varphi :{\mathcal M}\rightarrow {{\mathcal {M}}}$$φ:M→M is an additive generalized derivation and $$\tau :{{\mathcal {M}}}\rightarrow {{\mathcal {Z}}}({{\mathcal {M}}})$$τ:M→Z(M) is a central-valued map annihilating all $$(n-1)$$(n-1)th commutators. This generalizes some related known results.

Keywords: nonlinear generalized; rightarrow mathcal; mathcal rightarrow; generalized lie; von neumann

Journal Title: Bulletin of the Iranian Mathematical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.