LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust RGB-D Camera and IMU Fusion-based Cooperative and Relative Close-range Localization for Multiple Turtle-inspired Amphibious Spherical Robots

Photo from wikipedia

In the narrow, submarine, unstructured environment, the present localization approaches, such as GPS measurement, dead-reckoning, acoustic positioning, artificial landmarks-based method, are hard to be used for multiple small-scale underwater robots.… Click to show full abstract

In the narrow, submarine, unstructured environment, the present localization approaches, such as GPS measurement, dead-reckoning, acoustic positioning, artificial landmarks-based method, are hard to be used for multiple small-scale underwater robots. Therefore, this paper proposes a novel RGB-D camera and Inertial Measurement Unit (IMU) fusion-based cooperative and relative close-range localization approach for special environments, such as underwater caves. Owing to the rotation movement with zero-radius, the cooperative localization of Multiple Turtle-inspired Amphibious Spherical Robot (MTASRs) is realized. Firstly, we present an efficient Histogram of Oriented Gradient (HOG) and Color Names (CNs) fusion feature extracted from color images of TASRs. Then, by training Support Vector Machine (SVM) classifier with this fusion feature, an automatic recognition method of TASRs is developed. Secondly, RGB-D camera-based measurement model is obtained by the depth map. In order to realize the cooperative and relative close-range localization of MTASRs, the MTASRs model is established with RGB-D camera and IMU. Finally, the depth measurement in water is corrected and the efficiency of RGB-D camera for underwater application is validated. Then experiments of our proposed localization method with three robots were conducted and the results verified the feasibility of the proposed method for MTASRs.

Keywords: fusion; cooperative relative; relative close; rgb camera; localization

Journal Title: Journal of Bionic Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.