To improve the hydrogen storage performance of CeMg12-type alloys, partially substituting Mg with Ni in the alloy was conducted. The way to synthesize the target alloy powders was the mechanical… Click to show full abstract
To improve the hydrogen storage performance of CeMg12-type alloys, partially substituting Mg with Ni in the alloy was conducted. The way to synthesize the target alloy powders was the mechanical milling method, by which the CeMg11Ni + x wt% Ni (x = 100, 200) alloy powders with nanocrystalline and amorphous structure were obtained. The influence of the milling time and Ni content on the hydrogen storage properties of the alloys was discussed. The X-ray diffractometer and high-resolution transmission electron microscope were used to investigate the microstructures of the ball-milled alloys. The hydrogenation/dehydrogenation dynamics were studied using a Sievert instrument and a differential scanning calorimeter which was linked with a H2 detector. The hydrogen desorption activation energies of the alloy hydrides were evaluated by Arrhenius and Kissinger equations. From the results point of views, there is a little decline in the thermodynamic parameters (enthalpy and entropy changes) with the increase in Ni content. However, the alloys desorption and absorption dynamics are improved distinctly. What is more, the variation of milling time results in a dramatic influence on the hydrogen storage performances of alloys. Various maximum values of the hydrogen capacities correspond to different milling time, which are 5.805 and 6.016 wt% for the CeMg11Ni + x wt% Ni (x = 100, 200) alloys, respectively. The kinetics tests suggest that the hydrogen absorption rates increase firstly and then decrease with prolonging the milling time. The improvement of the gaseous hydrogen storage kinetics results from the decrease in the activation energy caused by the increase in Ni content and milling time.
               
Click one of the above tabs to view related content.