LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Mg addition on temper embrittlement in 2.25Cr–1Mo steel doped with 0.056% P–Mg segregation behavior at grain boundary

Photo from wikipedia

To verify the microalloying function and segregation behavior of trace Mg at grain boundary in steel, the 2.25Cr–1Mo steel doped with 0.056% P containing different Mg contents was refined with… Click to show full abstract

To verify the microalloying function and segregation behavior of trace Mg at grain boundary in steel, the 2.25Cr–1Mo steel doped with 0.056% P containing different Mg contents was refined with a vacuum-induction furnace. The effects of trace Mg addition on the temper embrittlement susceptibility of 2.25Cr–1Mo steel were studied by step-cooling test and the segregation behavior of Mg at grain boundary was explored by Auger electron spectroscopy. It is shown that P-induced temper embrittlement susceptibility can be reduced after subjecting to step-cooling treatment with trace Mg addition, mainly benefited from the segregation of Mg at grain boundary. This segregation can decrease the segregation amounts of P and S, especially for P, and increase the grain boundary cohesion, reducing the adverse effect on temper embrittlement caused by P and S.

Keywords: steel; grain boundary; temper embrittlement; segregation

Journal Title: Journal of Iron and Steel Research International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.