This article proposes new approaches for optimal planning of step-stress accelerated life testing models. The experiment considered is time constrained with the tested items not monitored continuously but inspected at… Click to show full abstract
This article proposes new approaches for optimal planning of step-stress accelerated life testing models. The experiment considered is time constrained with the tested items not monitored continuously but inspected at particular time points instead. The inspection points are primarily the points of stress level change and the experiment’s termination point, but the inclusion of additional intermediate inspection points is possible. The underlying lifetimes in each stress level follow a general-scale family of distributions having, among others, the exponential and the Weibull as special cases. For this model, the optimal allocation of the inspection points is studied in terms of the classical A-, C-, D- and E-optimality criteria, as well as in the context of minimizing the probability of nonexistence of the maximum likelihood estimators of the model’s parameters. For the determination of the inspection intervals’ length, a deterministic and a hazard rate-based approach are introduced. Simulation study results indicate that these new approaches outperform the standard ones of equal spacing and equal probability. All the considered designs are comparatively evaluated and discussed on the basis of simulation studies.
               
Click one of the above tabs to view related content.