LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ag-doping behavior on (8, 0) single-walled carbon nanotube with single C-vacancy or pyridine-like N3 defect: a DFT study

Photo from wikipedia

Single C-vacancy and pyridine-like N3 defect are usually formed on the single-walled carbon nanotube (SWCNT) and they have unique properties for potential applications. In this paper, we use density functional… Click to show full abstract

Single C-vacancy and pyridine-like N3 defect are usually formed on the single-walled carbon nanotube (SWCNT) and they have unique properties for potential applications. In this paper, we use density functional theory to investigate the discrepancies of such two structures from the geometric and electronic aspects. Our results indicate that the existed single vacancy in the SWCNT can lead to somewhat electron localization because of the lone pair electrons; while the N3 embedded SWCNT (N3-SWCNT) has stronger chemical reactivity and electron localization than the single vacancy SWCNT (SV-SWCNT) due to the great charge transfer between N3 group and C atom on the tube sidewall. Through the investigation of Ag-doping on the above two nano-structures, we found that the single Ag atom is much more stably adsorbed on the N3-SWCNT sidewall compared with SV-SWCNT, forming higher binding energy and higher electron transfer. Our calculation would shed light on the physicochemical property of SWCNT-based material and thus extend their potential applications in many fields.

Keywords: swcnt; single vacancy; vacancy; vacancy pyridine; pyridine like; like defect

Journal Title: Carbon Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.