LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence and regularity of the solutions to degenerate elliptic equations in Carnot-Carathéodory spaces

Photo from archive.org

We deal with existence and regularity for weak solutions to Dirichlet problems of the type $$\begin{aligned} \left\{ \begin{array}{ll} - \mathrm{div} (A(x)Xu) +b(x)Xu + c(x)u=f\quad \hbox {in} \; \varOmega \\ \\… Click to show full abstract

We deal with existence and regularity for weak solutions to Dirichlet problems of the type $$\begin{aligned} \left\{ \begin{array}{ll} - \mathrm{div} (A(x)Xu) +b(x)Xu + c(x)u=f\quad \hbox {in} \; \varOmega \\ \\ u=0 \quad \quad \hbox {on} \; \partial \varOmega . \end{array} \right. \end{aligned}$$in a bounded domain $$\varOmega $$ of $${\mathbb {R}}^n, n\ge 2.$$ We assume that the matrix of the coefficients $$A(x)= {^tA(x)}$$ satisfies the anisotropic bounds $$\begin{aligned} \frac{|\xi |^2}{K(x)}\le \langle A(x) \xi , \xi \rangle \le K(x) |\xi |^2\quad \quad \forall \xi \in {\mathbb {R}}^n,\; \hbox {for a.e.} \; x\in \varOmega \end{aligned}$$with the ellipticity function $$K(x)\in A_2\cap RH_{\tau }$$, $$\tau $$ opportunely related to the homogeneous dimension. The functions b(x) and c(x) are assumed to belong to some weighted Lebesgue spaces.

Keywords: solutions degenerate; degenerate elliptic; regularity solutions; existence regularity; quad

Journal Title: Banach Journal of Mathematical Analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.