LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors

Photo by stayandroam from unsplash

Perovskite-type oxides with general stoichiometry ABO3 (A is a lanthanide or alkali earth metal, and B is transition metal) constitute a rich material playground for application as resistive-type gas-sensing layers.… Click to show full abstract

Perovskite-type oxides with general stoichiometry ABO3 (A is a lanthanide or alkali earth metal, and B is transition metal) constitute a rich material playground for application as resistive-type gas-sensing layers. Immense interest is triggered by, among other factors, stability of abundant elements (≈ 90% in the periodic table) in this stoichiometry, relatively easy tunability of structure and chemical composition, and their off-stoichiometry stability upon doping. Moreover, their capability to host cationic and abundant oxygen vacancies renders them with excellent electrical and redox properties, and synergistic functions that influence their performance. Herein, we present an overview of recent development in the use of ABO3 perovskites as resistive-type gas sensors, clearly elucidating current experimental strategies, and sensing mechanisms involved in realization of enhanced sensing performance. Finally, we provide a brief overview of limitations that hamper their potential utilization in gas sensors and suggest new pathways for novel applications of ABO3 materials.

Keywords: type gas; gas sensors; gas; resistive type; performance; type

Journal Title: Journal of the Korean Ceramic Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.