LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Zn, Ni, and Mn doping ions on magnetic properties of MFe2O4 (M = Mn, Zn, and Ni) nanoparticles synthesized via sol–gel autocombustion using PVA/sago starch blend as a chelating agent

Photo by ninjason from unsplash

In this study, MFe2O4 nanoparticle materials (M = Mn, Ni, Zn) were synthesized by sol–gel combustion using polyvinyl alcohol blend sago starch as the chelating agent. To achieve the highest percentage yield,… Click to show full abstract

In this study, MFe2O4 nanoparticle materials (M = Mn, Ni, Zn) were synthesized by sol–gel combustion using polyvinyl alcohol blend sago starch as the chelating agent. To achieve the highest percentage yield, the concentration of PVA and of sago starch solution for coating the synthesized materials is 1.0 g and 30 mL (35% sago starch solution). The samples were characterized by X-ray diffraction and transmission electron microscopy techniques: the crystallite size was observed to be 8–27 nm. The magnetic properties of all three samples were studied, and the measurements were carried out using a vibrating sample magnetometer; the samples exhibit ferromagnetic properties. NiFe2O4 nanoparticle gave the highest saturation magnetization value of 109.32 emu/g and the lowest coercivity value of 83.20 Oe. Moreover, the samples showed no difference in thermal properties. The synthesized MFe2O4 nanoparticle can be applied as a density magnetic recording media material.

Keywords: sago starch; magnetic properties; chelating agent; sol gel; pva sago

Journal Title: Journal of the Korean Ceramic Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.