LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ni particle surface descriptor to enhance roughness of Ni internal electrode in MLCCs

The uniform and continuous nickel internal electrode is crucial in high capacity and highly reliable multi-layer ceramic capacitors (MLCCs). However, the mechanism and the key factors that affect the roughness… Click to show full abstract

The uniform and continuous nickel internal electrode is crucial in high capacity and highly reliable multi-layer ceramic capacitors (MLCCs). However, the mechanism and the key factors that affect the roughness of the electrode have not been investigated thoroughly. Thus, seeking suitable descriptors that describe the most influential element which decides the roughness is required for the logical design of the Ni paste. In this study, we analyzed the surface of nickel powders and compared their electrode roughness in the aspects of the surface carbon species on nickel nanoparticles. As the increase in the relative C–O/C–C and C=O/C–C ratios, the relative electrode roughness of C-Ni-1, C-Ni-2, C-Ni-3, and C-Ni-4 increased from 1.00, 1.29, 1.54 to 2.51. Thus, low contents of C–O and C=O on the surface of Ni particles could improve the uniformity of the electrode. This study suggests a valuable perspective to reveal the decisive component to build the optimum surface of nickel nanoparticles for uniform internal electrodes in MLCCs.

Keywords: particle surface; surface descriptor; electrode; roughness; internal electrode

Journal Title: Journal of the Korean Ceramic Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.