This paper introduces a novel technique for simplification of a three-dimension space vector pulse width modulation (3D-SVPWM). Conventional SVPWM calculations are based on trigonometric functions or several decomposition matrices. Thus,… Click to show full abstract
This paper introduces a novel technique for simplification of a three-dimension space vector pulse width modulation (3D-SVPWM). Conventional SVPWM calculations are based on trigonometric functions or several decomposition matrices. Thus, a very fast embedded controller is needed either for two-dimension space vector pulse width modulation (2D-SVPWM) or 3D-SVPWM. The proposed simplified 3D-SVPWM is dedicated to four-wire three-leg inverters. This technique is based on first-order equations of the curve fitting technique to reduce calculation time. Therefore, this method can be implemented with low memory storage and Central Processing Unit (CPU) capability. In addition, high accuracy can be achieved using higher-order equations. Many approaches are introduced for simplifications. The applications of the proposed simplified 3D-SVPWM method are also provided. Simulation results of the proposed simplified 3D-SVPWM and the conventional 3D-SVPWM are discussed. Finally, the results are verified using a real-time simulator based on Typhoon device (402) as Hardware-In-the-Loop. In addition, the controller of the simplified method is implemented and operated on the C2000 LAUNCHXL-F28379D as a low-cost microcontroller kit.
               
Click one of the above tabs to view related content.