LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust voltage model flux estimator design with parallel vector compensator for sensorless drive of induction motors

Photo from wikipedia

Flux estimator (FE) is critical for achieving high-performance sensorless drive of induction motors. A voltage model (VM) is an excellent candidate for a FE since it does not require speed… Click to show full abstract

Flux estimator (FE) is critical for achieving high-performance sensorless drive of induction motors. A voltage model (VM) is an excellent candidate for a FE since it does not require speed information and has a simple structure. A VM using a closed-loop style has excellent sensorless drive capability over a wide speed range. However, it is limited by the uncertainties such as offset and parameter mismatch. This paper presents an improved a closed-loop style FE. To overcome the problems inherent in the conventional FE, a hybrid strategy for the changeover between control modes is applied. In the setting of the FE’s cutoff frequency (CF), the influences of the offset and parameter mismatch are analyzed. The phase distortion and acquisition of the back electromotive force are also analyzed. From this analysis, a vector compensation strategy for the flux linkage is applied. This strategy facilitates the CF setting, which improves the robustness against both the offset and parameter mismatch. Finally, the effectiveness of the proposed FE in a sensorless driven induction motor is verified using simulations and experiments under various conditions.

Keywords: drive; induction motors; drive induction; sensorless drive; flux estimator

Journal Title: Journal of Power Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.