LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites

Photo from wikipedia

This study is mainly focused on the intrinsic fiber parameters and their influence on the mechanical properties of the hybrid composites. Cellulosic fibers are extracted from mesocarp of Cocos nucifera… Click to show full abstract

This study is mainly focused on the intrinsic fiber parameters and their influence on the mechanical properties of the hybrid composites. Cellulosic fibers are extracted from mesocarp of Cocos nucifera fruit and outer mat of Luffa cylindrica fruit. The inherent fiber parameters such as fiber diameter, lumen diameter, cell wall thickness are observed under light microscope. Micro-fibrillar angle is found using X-ray diffraction technique. Three varieties of hybrid polymer composite samples are fabricated using Cocos nucifera and Luffa cylindrica fibers as reinforcements in the ratio 2:1, 1:1 and 1:2 respectively employing hand layup technique with their combined weight maintained as 30%. Significant response in the Load Vs Deflection curve and mechanical properties of the hybrid composites are found attributing to the difference in the respective weight proportion of the constituent fibers in the hybrid composite system. Results exemplify that the hybrid composite sample comprising Cocos nucifera and Luffa cylindrica fibers in the ratio 1:2 capitulates the maximum flexural strength and impact strength of 31.05 MPa and 14.24 kJ/m2 respectively when compared with other hybrid composites. The reason for the difference in mechanical strength of hybrid composite samples containing two different fibers is found to be related to the built-in architecture and physical characteristics of the constituent fibers. The morphology of the fractured samples are examined and reported. It is concluded that properties of hybrid composites can be tailor made depending upon the requirements either by using the Cocos nucifera fibers to impart ductility or Luffa cylindrica fibers to impart brittleness.

Keywords: fiber; hybrid composites; mechanical properties; cocos nucifera; luffa cylindrica; properties hybrid

Journal Title: Archives of Civil and Mechanical Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.