LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified Burzynski criterion along with AFR and non-AFR for asymmetric anisotropic materials

Photo by aleexcif from unsplash

Burzynski criterion is a well-known criterion is employed for pressure-sensitive isotropic materials. In the current study, this criterion is modified for asymmetric anisotropic materials called hear MB. Firstly, a modified… Click to show full abstract

Burzynski criterion is a well-known criterion is employed for pressure-sensitive isotropic materials. In the current study, this criterion is modified for asymmetric anisotropic materials called hear MB. Firstly, a modified deviatoric stress tensor is defined with a linear transformation to consider the anisotropy effects of materials. Secondly, MB is presented by the sum of n-components to have more capability to be calibrated with different numbers of experimental tests and thirdly, the non-linear impact of hydrostatic pressure is ignored due to the previous experiments. In this research, when associated flow rule (AFR) and non-associated flow rule (non-AFR) are employed to calibrate MB, it is called MB-1 and MB-2, respectively. Yielding of different alloys such as AA 2008-T4 and AA 2090-T3 with Face-Centered Cubic (FCC) structure and also AZ31 B, ZK61 M, high purity α-titanium, texture magnesium, Mg-0.5% Th alloy, Mg-4% Li alloy and Ti-4 Al-1/4 O2 titanium alloy with Hexagonal Close-Packed (HCP) structure are studied to show the accuracy of MB-1 and MB-2. It is shown that the presented approach is very effective especially by using MB-2.

Keywords: anisotropic materials; burzynski criterion; afr non; non afr; criterion; asymmetric anisotropic

Journal Title: Archives of Civil and Mechanical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.