LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charting protein dephosphorylation triggered by Toll-like receptor (TLR) signaling in macrophages and its role in health and disease.

Photo from wikipedia

Toll-like receptor (TLR) signaling induces substantial changes in the phosphoproteome of innate immune cells, mainly in the form of increased phosphorylation of signaling intermediaries. Loss of constitutive phosphorylation occurs simultaneously,… Click to show full abstract

Toll-like receptor (TLR) signaling induces substantial changes in the phosphoproteome of innate immune cells, mainly in the form of increased phosphorylation of signaling intermediaries. Loss of constitutive phosphorylation occurs simultaneously, but these transitions from a stable, phosphorylated state in resting cells to a sustained underphosphorylated state in activated cells have received far less attention. This review provides an overview of phosphorylation sites downregulated during TLR-mediated signaling, with a particular focus on TLR4 activation by lipopolysaccharide (LPS). Energy homeostasis, the cell cycle, mitochondrial fission, and gene regulation are among the biological events in macrophages that are regulated through the downregulation of phosphoproteins as part of intracellular signaling events. Phosphoproteomics studies on innate immune cells have identified hundreds of hitherto uncharacterized phosphorylation sites that are lost upon stimulation, indicating that protein hypophosphorylation is a significant, largely unexplored layer of complexity in the TLR4 pathway.

Keywords: toll like; like receptor; tlr signaling; receptor tlr

Journal Title: International review of cell and molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.