Lateral flow assay (LFA) type of biosensors have been popular due to cost-effectiveness and easy-interpretation for instant results, most common examples of applications being pregnancy tests, food safety or medical… Click to show full abstract
Lateral flow assay (LFA) type of biosensors have been popular due to cost-effectiveness and easy-interpretation for instant results, most common examples of applications being pregnancy tests, food safety or medical diagnostics. There are several examples of reports with high sensitivity, including pre-concentration of the sample by magnetic pull-down. However, sensitivity and direct detection designs with aptamers has been a limiting factor for developing aptamers-based LFA assays. In this study, we report a lateral flow design based on aptamer-gated silica nanoparticles to develop high sensitivity and direct bacterial assay by shifting aptamers-target interaction to conjugation pad. Aptamer-gated silica nanoparticles-based biosensors were reported for their high sensitivity, specificity and label-free detection for small molecules and whole cells. This label-free strategy for LFA can determine L. monocytogenes in minced chicken matrix at less than 5 min with a limit of detection (LOD) of 53 cells in one mL samples.
               
Click one of the above tabs to view related content.